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Abstract

Deep unfolding attempts to leverage the interpretability of traditional model-

based algorithms and the learning ability of deep neural networks by unrolling

model-based algorithms as neural networks. Following the framework of deep

unfolding, some conventional dictionary learning algorithms have been expanded

as networks. However, existing deep unfolding networks for dictionary learning

are developed based on formulations with pre-defined priors, e.g., ℓ1-norm, or

learn priors using convolutional neural networks with limited receptive fields. To

address these issues, we propose a transformer-based deep unfolding network for

dictionary learning (TDU-DLNet). The network is developed by unrolling a gen-

eral formulation of dictionary learning with an implicit prior of representation

coefficients. The prior is learned by a transformer-based network where an inter-

stage feature fusion module is introduced to decrease information loss among

stages. The effectiveness and superiority of the proposed method are validated

on image denoising. Experiments based on widely used datasets demonstrate

that the proposed method achieves competitive results with fewer parameters

as compared with deep learning and other deep unfolding methods.
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1. Introduction

Sparse representation provides effective prior information for inverse prob-

lems in signal and image processing by representing a signal y ∈ Rm as linear

combinations of a few atoms from a dictionary D ∈ Rm×d, i.e., y = Dx, where

the representation coefficient x ∈ Rd is a sparse vector with many zero elements,

and its sparsity is represented as the number of non-zero elements. Compared

with pre-defined dictionaries, adaptive dictionaries learned from data tend to

represent signals more accurately and achieve better performance. Many dictio-

nary learning algorithms have been proposed [1, 2, 3, 4, 5] and found applications

in image denoising, image super-resolution, signal declipping, and image deblur-

ring [6, 7, 8, 9, 10]. However, traditional dictionary learning usually divides the

whole image into over-lapping patches, which neglects the dependencies between

the patches and lacks shift-invariance. To address this issue, convolutional dic-

tionary learning (CDL) [11, 12, 13] replaces the matrix product operation with

the convolution operation, which is shown to outperform the traditional dictio-

nary learning in many applications, e.g., image denoising [14], image fusion [15],

and rain streak removal [16]. It should be noted that both traditional dictionary

learning and convolutional dictionary learning are model-based methods using

explicit formulations for specific tasks.

In recent years, deep neural networks (DNN) have achieved better results

than traditional model-based methods in many image processing tasks [17, 18,

19, 20, 21]. Driven by a large amount of data, DNN can learn deep structural

information of images. However, DNN models usually lack good interpretability

due to its “black-box” nature. In contrast, traditional model-based algorithms

are usually highly interpretable, as they are developed via modeling the physi-

cal processes underlying specific problems. To integrate the advantages of DNN

models and model-based algorithms, deep unfolding [22, 23, 24, 25, 26, 27, 28]

has been proposed by developing model-driven DNNs. A widely used mech-

anism in deep unfolding is to unroll an iterative algorithm to an end-to-end
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network, where the optimal variables and parameters in the original model can

be converted as parameters of a network and learned in a data-driven fashion

via back-propagation [22, 25, 29, 30]. In addition, some researchers attempt to

integrate more elements of neural networks to further improve the performance

of deep unfolding methods. One approach is to employ convolutional layers

as an alternative to matrix multiplications or convolutional computations in

conventional algorithms [31, 32]. This can enhance the flexibility of the model

and accelerate the convergence of the algorithm. Another approach plugs an

existing neural network, e.g. UNet [33], into the unfolding framework [28, 34].

The plug-in of the neural network makes it possible to learn implicit priors from

data, which can greatly improve the performance of the model.

However, existing dictionary learning methods based on deep unfolding still

have some shortcomings for improvement. First, some of the methods adopt pre-

defined priors with explicit definitions, e.g., ℓ1-norm regularizer, in the models

for unfolding [31, 32, 27]. Second, in the deep unfolding methods that learn pri-

ors from data, convolutional neural networks (CNNs) are often used [28], [34].

Nevertheless, CNNs have limited receptive fields due to the use of convolution

operators, and thus may not be effective in modelling the long-range dependen-

cies within data such as image patches. This may prevent the priors learned

by CNN-based unfolding methods from capturing the global features from data

[35]. Moreover, existing unfolding networks neglected the relationships between

the features extracted in different stages of the network, and results in informa-

tion loss in terms of feature extraction [34]. To solve these problems, we propose

to unfold a general dictionary learning model with an implicit prior and develop

a transformer-based deep unfolding framework for dictionary learning (TDU-

DLNet). Our main contributions are summarized below:

1) The overall architecture of the proposed model is derived by unrolling a

general model of dictionary learning using an implicit prior formed from

the representation coefficients. The learning of the prior is realized by a

transformer-based network which considers long-range dependencies be-
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tween image patches.

2) An inter-stage feature fusion module is embedded to inherit the features

learned in the previous stages and reduces the information loss between

different stages of the unfolding model.

3) The proposed model is applied to image denoising and obtains better

results than classic deep learning methods and other state-of-the-art deep

unfolding methods.

The remaining sections are organized as follows. Section 2 presents some

related work including the general model for dictionary learning and the deep

unfolding methods. Section 3 introduces the formulation, alternating direction

method of multipliers (ADMM) algorithm, and the corresponding deep unfold-

ing architecture. Section 4 presents experimental details and results as compared

with other models and Section 5 draws the main conclusions of the study.

2. Related Works

2.1. Dictionary learning

Dictionary learning aims to learn a dictionary from a set of training signals

where the signals can be represented as linear combinations of a few atoms of

the learned dictionary. Let Y ∈ Rm×n and D ∈ Rm×d denote the training

signals and the dictionary to be learned, respectively. The general formulation

of dictionary learning can be written as [1]

argmin
D,X

1

2
∥Y −DX∥2F + λφ(X), (1)

where X ∈ Rd×n denotes the representation coefficients of the signals Y with

respect to the dictionary D, and λ is the penalty parameter. The first term is

the reconstruction error, where ∥ · ∥F denotes the Frobenius norm. The second

term φ(X) denotes the regularization function reflecting the sparse property of

the representation coefficients. Most existing dictionary learning algorithms use

ℓ1 or ℓ0 norm to constrain X [1, 36].
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Dictionary learning was initially applied to image denoising by reconstruct-

ing images using a learned dictionary and the corresponding representation co-

efficients [37], and it has found applications in other inverse problems of image

processing, such as image denoising, image super-resolution, image deblurring,

and image segmentation [38, 7, 9, 10]. However, in these applications, the pro-

cess of dictionary learning and image reconstruction is based on image patches,

which results in dictionaries lacking the property of shift invariance. The dic-

tionaries are sensitive to the translation of image features and cannot extract

image patterns effectively [11, 12]. To address this issue, CDL [11, 12, 13] is

proposed by substituting the dictionary with linear filters. In this way, an entire

image can be represented directly using the convolution with the filters, and does

not have to be broken down into small patches. This method yields outstand-

ing performance in image reconstruction and denoising [39], [40]. Traditional

dictionary learning and CDL are unsupervised tasks and their applications to

image restoration are usually in an unsupervised manner without the access to

clean images [37, 9, 11].

2.2. Deep unfolding

Deep unfolding constructs model-driven networks by unrolling traditional

iterative model-based algorithms to end-to-end networks. In particular, the

operations of each iteration are unfolded as one layer of a network, and the

optimization variables and parameters are converted to the parameters to be

learned in the network. The seminal work in [22] unrolls iterative algorithms to

neural networks and develops neural network approximations for sparse coding.

In [26], the traditional ADMM algorithm [41] is unrolled to a network for image

compressive sensing. In [23], a traditional non-negative matrix factorization al-

gorithm is unrolled to a deep network for single channel speech separation. Deep

unfolding networks by unrolling image reconstruction models with sophisticated

priors have been proposed. For example, edge-related priors are considered in

[42, 43, 44] and priors in transform domains are exploited in the deep unfolding

works [45, 46]. In [25], a comprehensive review for deep unfolding for signal and
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image processing is given, including popular unrolling techniques, algorithms,

and their applications.

In the field of dictionary learning, Meyer et al. [27] reformulated the calcula-

tion chain of a classical dictionary learning algorithm K-SVD [1] and proposed

an end-to-end framework, namely, the learned K-SVD (LKSVD). Bahareh et

al. [47] develops a constrained neural network by unfolding the iterative op-

timization procedure for CDL. In [32], stride convolutional and transposed-

convolutional layers are utilized to formulate the convolution operator in the

traditional Convolutional Sparse Coding (CSC) model, which can also support

the shift invariance as in CDL. Apart from the convolution layers, some other

network structures are also employed to expand the iterative unfolding frame-

work. For example, Zheng et al. [28] use the UNet [33] framework to learn the

prior features of coefficient representation rather than using handcrafted priors,

e.g., ℓ1 norm, that are widely used in dictionary learning. Yan et al. [39] further

improves this work and applies it for denosing low-dose CT images. By inte-

grating the neural network framework into the iterative unfolding framework,

many deep unfolding models [48, 49, 50] utilize this strategy to leverage the

learning ability of neural networks. These prior works have demonstrated the

effectiveness and the efficiency of the framework of deep unfolding [32, 47, 28],

as compared with traditional iterative algorithms and deep learning. However,

most of the current deep unfolding frameworks use convolutional neural net-

works as a plug-in, which is effective in capturing local features, but tends to be

limited in capturing global information, e.g. the relations between pixels from

distant receptive fields. Transformer has been used in deep unfolding networks

[51], [52], [53], however, these networks are inspired by image restoration models

rather than dictionary learning. In these methods, the unfolding architecture

relies on formulations for image restoration, where the priors on image data are

exploited to reconstruct the images directly.

Most deep unfolding networks are troubled with information loss between

the stages due to the intrinsic feature-to-image transformation [34]. Some inter-

stage feature fusion techniques have been developed to alleviate this issue. Mou
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et al. [34] and Dong et al. [52] proposed stage interaction modules in a spatially

adaptive normalization manner [54]. Li et al. [51] performed stage feature fusion

in the Fourier transform domain for reconstruction of hyperspectral images.

However, these feature fusion modules are used in deep unfolding methods for

image restoration. In the area of dictionary learning, no work has considered

the fusion of features across different stages of deep unfolding networks.

3. Proposed Algorithm

In this section, we first consider a general model for dictionary learning and

develop an iterative optimization method based on ADMM [41] to address the

obtained problem. A network is then designed by unfolding the optimization

model.

3.1. Problem Formulation and ADMM solver

We consider the general formulation (1) directly without defining any reg-

ularization terms explicitly. To decouple the optimization variables in the re-

construction term and the regularization term, we introduce an independent

auxiliary variable Z, and reformulate (1) as

arg min
D,X,Z

1

2
∥Y −DX∥2F + λφ(Z)

s.t. X = Z,

(2)

where φ(Z) represents the prior of Z without any explicit definitions. This

formulation is different from the formulations used in the existing deep unfolding

methods for dictionary learning. For example, LKSVD [27] and the method

proposed in [47] utilize the ℓ1-norm to constrain the representation coefficients

rather than learn a prior from data. DCDicL [28] employs priors on both the

dictionary and the representation coefficients. Compared with these works,

formulation (2) applies only an implicit prior on the representation coefficients,

and is more suitable to learn a general dictionary as the prior is learned from

data.
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As ADMM has strong theoretical guarantees even for non-convex and non-

smooth problems [41, 55], we develop the unfolding network based on ADMM.

The corresponding augmented Lagrangian function of the above problem is

Lρ(X,Z,µ) =
1

2
∥Y −DX∥2F + λφ(Z) + ⟨µ,X− Z⟩

+
ρ

2
∥X− Z∥2F ,

(3)

where µ is Lagrangian multipliers and ρ is a penalty parameter. To make the

subsequent formulas more concise, we assume β = µ
ρ . Based on the framework

of ADMM [41], the original problem can be addressed by alternatively updating

the variables X, D, Z, and β, i.e.,

SolveX : argmin
X

1
2∥Y −DX∥2F + ρ

2 ∥X+ β − Z∥2F

SolveD : argmin
D

1
2∥Y −DX∥2F

SolveZ : argmin
Z

ρ
2 ∥X+ β − Z∥2F + λφ(Z)

Solveβ : β ← β + η (X− Z) ,

(4)

where η is the rate for updating the Lagrangian multiplier. Different from

the projected gradient descent [56], ADMM uses an extra intermediate step to

update the Lagrangian parameters in the iterative steps, i.e., Solveβ, due to

the employment of augmented Lagrangian for relaxation and variable splitting.

This further improves the convergence rate of the algorithm.

We generalize the dictionary D as a convolutional layer ConvD [31, 32, 34],

where D is embedded as learning parameters in the convolutional layer, i.e., the

convolution kernel. In this way, the learned dictionary can be applied to images

of different sizes directly without resizing the images or extracting patches,

and the update of D can be realized in the training of the unfolded network

implicitly. The data Y can be an entire image, rather than a set of patches

as in the traditional dictionary learning model. Similarly, the transpose of D

is simulated using another convolutional layer ConvDT , where the transpose

of D acts as the convolution kernel. In fact, this simulation can be regarded

as a generalization of the conventional dictionary. In conventional dictionary

learning, signals can be represented using the dictionary and the representation
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coefficients, where the dictionary contains features that are learned from the

signals. In the proposed model, the convolutional layers, which are used to

simulate the dictionary and its transpose, are also used to extract the features.

The update of the other variables in the k-th iteration can be written as

UpdateX : Xk = Xk−1 − αk
{
ConvkDT

[
ConvkD(Xk−1)−Y

]
+ρk

(
Xk−1 − Zk−1 + βk−1

)}
, (5a)

UpdateZ : Zk = S
[
Xk + βk−1, λk/ρk

]
, (5b)

Updateβ : βk = ηk1β
k−1 + ηk2X

k − ηk3Z
k, (5c)

where S(.) denotes the proximal operator of φ(·) [26]. To improve the flexibility

of the model, we generalize the single parameter η in (4) as three independent

parameters ηkn (n = 1, 2, 3). In the conventional ADMM, the hyper-parameters

αk, βk, λk, ρk, and ηk need to be pre-specified, while in the proposed deep un-

folding network, these hyper-parameters are generalized as learnable parameters

as will be detailed in the next section.

The update of X is based on a gradient descent step with αk being the step

size. As the dictionary D and its transpose are simulated using two convolu-

tional layers, the gradient used in UpdateX is also based on the convolutional

layers, which can be seen as a prediction of the actual gradient [34]. In the

update of Z, the proximal operator S(.) is usually a soft thresholding function

corresponding to the ℓ1-norm regularizer which is widely used in traditional

dictionary learning. In [26], the regularizer φ(·) is generalized as a learnable

piecewise linear function rather than a fixed function. We attempt to learn a

more general regularizer without explicit definitions by regarding the subprob-

lem SolveZ as a denoising problem, and use deep neural networks to address

the problem.

By combining the ADMM iterations with the data-driven strategy and gen-

eralized denoiser, the iterative ADMM algorithm can be unfolded as a network.

The details of the deep unfolding network will be presented in Section 3.2.
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3.2. Deep unfolding architecture

The whole architecture of the proposed TDU-DLNet is shown in Fig. 1,

which is constructed by unrolling the iterative steps of the ADMM solver in (5).

CDR

IIFT

LMU

CDR

HypaNet

Input
Image

CDRHNet

IIFT

LMU

Output
Image

Figure 1: The whole deep unfolding architecture of TDU-DLNet.

The optimal variable and the regularization coefficient in (2) are transferred

to the network parameters, and these parameters can be learned in an end-to-

end fashion as in traditional neural networks. Each iteration of the iterative

algorithm is seen as one stage of TDU-DLNet, and the main structure of TDU-

DLNet consists ofK repeated stages. Each stage has three interrelated modules:

Convolutional Dictionary Reconstruction (CDR) module, Interstage Informa-

tion Fusion Transformer (IIFT) module, and Lagrangian Multipliers Update

(LMU) module. These three modules correspond to the update of X, Z, and

β in equation (5), respectively. The update of the dictionary D is embedded

in the convolutional layers of the CDR module, as mentioned in Section 3.1.

As shown in Fig. 1, the CDR module converts the image to the dictionary do-

main by estimating the representation coefficients X so that the IIFT module

can perform denoising in this new domain by estimating Z from X. The LMU

module connects various stages by fusing the output of CDR and IIFT in the

current stage and passes this fused output to the next stage.

At the beginning of the proposed architecture, an HNet [28] is used to ini-

tialize the feature map X0 based on the noisy image and the noise level σ.

HNet consits of 2 convolutional layers with the Rectified Linear Unit (ReLU)

activation.

10



To improve the adaptability of the proposed model to different noise levels,

we utilize HypaNet [28] to learn adaptive hyper-parameters with respect to noise

levels. HypaNet is composed of 2 convolutional layers (kernel size 1) and one

softPlus layer that approximates the ReLU function smoothly [28]. Its input is

the noise level of the input images and the output is the hyper-parameters in

(5), i.e., {P k}Kk=1 = {αk, λk, ρk, ηkn (n = 1, 2, 3)}Kk=1.

In the end of the network, the final representation coefficients are obtained

by the last CDR module, and the clean image is reconstructed by applying the

convolution layer corresponding to D to the final coefficients, which is consistent

with the reconstruction of signals in traditional dictionary learning.

3.2.1. Convolutional Dictionary Reconstruction module

The update of X and D is unfolded as a CDR module. As mentioned in

Section 3.1, the dictionary and its transpose are generalized as two convolutional

layers. The structure of the CDR module, as shown in Fig. 2, is developed based

on equation (5a).

-1-1

-1

Element-wise multiplication Element-wise addition

Figure 2: The Convolutional Dictionary Reconstruction (CDR) module.

The output Xk of this module is based on Xk−1 ∈ RW×H×C , Zk−1 ∈

RW×H×C , and βk−1 ∈ RW×H×C from the previous stage, where W , H and

C are the dimensions and number of channels, respectively. Y ∈ RW×H×Cin

is the input image with additive white Gaussian noise of standard deviation,
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i.e., noise level σ, and Cin is the number of channels of the input image. The

convolutional layer Convk−1
D (kernel size 3) corresponds to the dictionary of the

(k − 1)-th stage, and it converts C channels to Cin channels (Cin = 1 for gray

images or Cin = 3 for color images). The convolutional layer Convk−1
DT (kernel

size 3) denotes DT of the (k − 1)-th stage, and the number of channels is con-

verted from Cin to C via this layer. In the proposed method, we set C = 16 to

get deep features.

3.2.2. Interstage Information Fusion Transformer Module
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Figure 3: The Interstage Information Fusion Transformer (IIFT) module.
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The subproblem SolveZ in equation (4) is regarded as a denoising problem

and the IIFT module is developed to address it. In the update of Z, the prior

of Z is learned implicitly from data. IIFT has an encoder-decoder structure

composed of three down-sampling and up-sampling layers. To reduce the loss

of information between different stages, we introduce an Inter-Stage Feature

Fusion (ISFF) module [34]. The detailed structure of the IIFT module is shown

in Fig. 3, including the structures of its core modules Transformer Block and

ISFF.

The noise level σ is replicated and extended to σ̂, a tensor of the same

dimension as Xk. The concatenation of Xk and σ̂ is used as the input of IIFT,

to improve the adaptability to noise levels [28]. A convolutional layer (kernel

size 3) is then employed to convert the channels of the input from C + 1 to

C, and a Channel Attention Block (CAB) is utilized for feature reinforcement.

To refine the features obtained in the previous state, a Supervised Attention

Module (SAM) [57] is used to obtain the attention map of the current stage,

i.e., Sk, and the attention map of the previous stage Sk−1 is injected into a

Subspace Attention (SSA) module [58] of the current stage.

In the three down-sampling steps, each step uses a down-sampling convo-

lutional layer, an ISFF module [34] and a Transformer Block consisting of a

Multi-Dconv head Transposed Attention (MDTA) and a Gated-Dconv Feed-

forward Network (GDFN) module [35]. The corresponding up-sampling steps

use an up-sampling convolutional layer and a Transformer Block same as those

in the down-sampling steps.

(1) ISFF: The ISFF module aims to fuse cross-stage information to reduce

the loss of information between stages, which can fuse the encoder and decoder

features obtained in the previous stage. The formulation of ISFF [34] is defined

as  Hk−1
n = Conv1

(
Fk−1

enc⊛n

)
+Conv2

(
Fk−1

dec⊛n

)
,

Fk
enc⊛n = F̂k

enc⊛n ⊙ Conv3
(
Hk−1

n

)
+Conv4

(
Hk−1

n

)
,

(6)

where Convi(i = 1, 2, 3, ...) denotes the convolution operation, ⊙ denotes the

element-wise multiplication, and F̂k
enc⊛n represents the input feature map of

13



ISFF in the current stage. Fk−1
enc⊛n ∈ RW

2n × H
2n ×2nC and Fk−1

dec⊛n ∈ RW
2n × H

2n ×2nC

denote the encoder and decoder features of the n-th (n = 0, 1, 2) scale of the k−1

stage, respectively. The output of ISFF Fk
enc⊛n is injected into the Transformer

Block.

(2) Transformer Block: The Transformer Block consists of MDTA and

GDFN modules, where MDTA focuses on global features and GDFN aims to

obtain local information of spatially neighboring pixels. This block can get

output feature maps with global context information and local structures of the

input feature maps.

The formulation of MDTA is defined as [35]

ẐM = Convp Attention(Q,K,V) + F,

Attention(Q,K,V) = V · Softmax(K⊙Q/α),
(7)

where the query (Q), key (K) and value (V) projections are generated from

the input feature F, i.e., Q = ConvdQ(Conv
p
Q(F)), K = ConvdK(ConvpK(F)),

V = ConvdV (Conv
p
V (F)). Conv

p
(.) is the 1×1 point-wise convolution and Convd(.)

is the 3× 3 depth-wise convolution to enhance local features. Conv
(.)
Q , Conv

(.)
K ,

and Conv
(.)
V denote the convolution layers to obtain the query, key and value

projections. α is the learning parameter to constrain the element-wise mul-

tiplication for stability. ẐM is the output feature map through generating a

global attention map of cross-channels, which contains enriching context infor-

mation. ẐM is then fed into GDFN to learn the local structural information of

the feature map.

The GDFN module is defined as [35]

ẐG =Convp5 Gating(ẐM ) + ẐM ,

Gating(ẐM ) =GELU
(
Convd6 Conv

p
6(LN(ẐM ))

)
⊙ Convd7 Conv

p
7(LN(ẐM )),

(8)

where GELU represents a non-linear activation layer based on Gaussian error

linear unit, and LN is the layer normalization. ẐG is the output feature map of

GDFN.
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By integrating the ISFF module and the Transformer Block, we propose

the IIFT module to get the global feature map and capture long-range pixel

interactions. The IIFT module is utilized to replace S(.) in (5), and embedded

into the iterative ADMM algorithm and served as a denoiser. In this way, the

proposed unfolding model can make full use of DNN to learn the local structure

information and global structure simultaneously.

3.2.3. Lagrangian Multipliers Update Module

The LMU module is used to update the Lagrangian multiplier β in equation

(5c). The input of this module in the k-th stage is the output of the LMU

module in the previous stage and the output of the CDR and IIFT modules in

the current stage: βk−1,Xk, and Zk. The output of LMU module is defined as

βk = ηk1β
k−1 + ηk2X

k − ηk3Z
k, (9)

where βk−1 denotes the Lagrangian multiplier of stage k − 1. The parameters

ηkn (n = 1, 2, 3) are obtained via the HypaNet [28], as mentioned in Fig. 1 of

Section 3.2.

3.2.4. Loss function

The unfolded network is trained in a supervised manner rather than un-

supervised as in traditional dictionary learning. Given the ground-truth image

Ygt, the noisy image Y, a training set Γ consisting of pairs of Ygt and Y can be

constructed. The averaged ℓ1 loss is used as the loss function, which is defined

as

E(Θ) =
1

|Γ|
∑

(Y,Ygt)∈Γ

∥∥∥Ŷ(Y,Θ)−Ygt
∥∥∥
1
, (10)

where Ŷ is the output of the TDU-DLNet model, andΘ = {ConvkD, ConvkDT , α
k,

ρk, η
k
n (n = 1, 2, 3)}Kk=1 denotes the set of parameters to be learned in the model.

3.2.5. Comparison with related deep unfolding methods

Table 1 compares the components of the proposed method with those related

deep unfolding methods in terms of underlying formulation, underlying iterative
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Table 1: Comparison with related deep unfolding methods

Methods Underlying

Formulation

Underlying

Iterative Algorithm

Neural Networks

Embedded

DGUNet

[34]

Image restoration with an

implicit prior on the image

Proximal Gradient

Descent (PGD)

CNN-based

network with ISFF

LKSVD

[27]

Dictionary learning with an

ℓ1-norm prior on

representation coefficients

Iterative

Soft-Thresholding

Algorithm (ISTA)

Multi-Layer

Perceptron (MLP)

network

DCDicL

[28]

Convolutional dictionary

learning with two implicit

priors: a prior on the

dictionary and a prior on

representation coefficients

Half Quadratic

Splitting (HQS)

CNN-based

network

TDU-

DLNet

Dictionary learning with an

implicit prior on

representation coefficients

Alternating

Direction Method of

Multipliers

(ADMM)

Transformer-based

network with ISFF

algorithm, and neural networks embedded. From this table, it is clear that the

proposed method is radically different from existing deep unfolding methods.

The method DGUNet [34] is based on a formulation for image restoration by

considering a prior on the image directly, while the proposed method is a general-

ization of traditional dictionary learning and applies a prior to the representation

coefficients based on a learned dictionary. As compared with the deep unfolding

methods for dictionary learning (LKSVD [27] and DCDicL [28]), the proposed

method is based on a general formulation for dictionary learning with only one

implicit prior on representation coefficients, and its architecture is developed

by unrolling the iterative steps of ADMM and embedding a transformer-based

network with ISFF.

Deep unfolding methods attempt to integrate the good interpretability of

model-based methods and powerful learning ability of deep learning methods.

In these methods, iterative algorithms based on traditional methods are unrolled

as approximate neural networks, and the parameters of the unfolded model are
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learned with deep neural networks in an end-to-end fashion. Our proposed

model follows the framework of deep unfolding, and the overall architecture is

constructed by unrolling the iterative steps generalized from ADMM. Due to

approximations used in the unrolling process, the interpretability of the pro-

posed model is not as good as the original dictionary learning model, but it is

better than that of pure deep learning networks.

4. Experiment

As the formulation on which the proposed unfolding network is based is a

general one without considering the degradation process of images, the proposed

network can be extended to other image reconstruction problems with the same

input and output size, such as image restoration and image deblurring, when

corresponding data sets are available. In this section, we take image denoising

as an example and perform experiments to demonstrate the performance of the

proposed model as compared with existing related methods. Ablation studies

on the number of stages and different components of the proposed model are

also given.

4.1. Training details

Following the experiments in [28], we utilized the combination of datasets

BSD400 [59], DIV2K [60] and WED [61] for training. These datasets contain

pairs of clean images and noisy images with additive white Gaussian noise.

Patches of size 128× 128 randomly extracted from clean and noisy image pairs

of the datasets were used as training data. The noise level σ, i.e., the standard

deviation of additive white Gaussian noise, is a random number from 15 to 50.

We used the Adam optimizer to update the learnable parameters and the

maximum epoch was 200. In order to speed up the training, the learning rate r

was set as 1e − 3 initially and decayed to 1e − 4 by a factor of 0.5 for the first

50 epochs, and r decayed to 1e − 6 by a factor of 0.8 for the last 150 epochs.

The batch size was set as 4 for 2e5 iterations. We set the number of stages
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K = 5. From level-1 to level-4 of the IIFT module, the number of channels of

the Transformer blocks are 16, 32, 64, and 128, respectively. The model training

was performed on a Nvidia GeForce RTX 3090 GPU1.

4.2. Ablation studies

4.2.1. Selection of K

To investigate the impact of the stage number K, different settings of K

were tested with all other parameters being fixed. The results on CBSD68 [59]

are presented in Fig. 4, where the horizontal axis refers the inference time using

the trained model and the vertical axis refers to the Peak Signal-to-Noise Ratio

(PSNR) of the denoised images.

0 1 2 3 4
inference time (s)
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31.85
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Figure 4: PSNR (dB) results with different settings of stage number K.

It can be seen that the values of PSNR rise with the increase of K. The

PSNR value at K = 7 is slightly higher than that at K = 5, while the former

requires more inference time. In order to balance the performance and time

consumption, we set K = 5 in the following experiments.

1The code of the proposed algorithm is available at https://github.com/wuhu1010/

TDUDLNet.
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4.2.2. Ablation study with respect to IIFT

To validate the effect of the IIFT module of the proposed model, we replaced

the IIFT module as the soft-thresholding operator or UNet with Resblocks [28].

In [31], the soft-thresholding operator is used to obtain sparse coefficients. UNet

with Resblocks [28] is widely used network for image denoising, and the four

blocks corresponding to the up-down sampling have 16, 32, 64, 128 channels

same as the settings of the proposed model. To investigate the impact of the

ISFF module used in IIFT, we tested the proposed model using IFFT without

ISFF, the model using UNet with Resblocks with ISFF embedded, and IIFT

with the feature fusion (FF) module [52]. The results of these ablation studies

on CBSD68 are summarized in Table 2.

Table 2: Results of ablation studies related to IIFT.

Employment of

ISFF

Modules used

to address SolveZ

PSNR (in dB)
Params

σ = 15 σ = 25 σ = 50

Without ISFF

Soft-thresholding operator 32.36 29.97 26.58 12.03K

UNet with Resblocks 34.20 31.62 28.45 2.05M

IIFT w/o ISFF 34.39 31.77 28.59 3.06M

IIFT with FF [52] 34.43 31.83 28.66 3.08M

With ISFF
UNet with Resblocks 34.29 31.70 28.52 2.83M

IIFT (Ours) 34.54 31.94 28.77 3.26M

Though ISFF is not used, the proposed model using IIFT outperforms the

models using soft thresholding or UNet with Resblocks. When ISFF is embed-

ded, both the proposed model using IIFT and UNet with Resblocks achieve

better results than their versions without ISFF. When the FF module [52] is

used in IIFT, the denoising performance is better than IIFT without any fea-

ture fusion modules but worse than IIFT with ISFF. This demonstrates the

effectiveness of the proposed IIFT module and the employment of ISFF.

To compare the prior features learned by the soft-thresholding operator,

UNet with Resblocks, and the IIFT module of the proposed model intuitively, we
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used the image 04 in Set12 [62] as the test image and visualized its feature maps

learned by different methods in Fig. 5. It can be seen that feature maps learned

(a) Feature maps learned by the soft-thresholding operator.

(b) Feature maps learned by UNet with Resblocks.

(c) Feature maps learned by the IIFT module of the proposed model.
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(d) Visualization of the variances of the feature maps learned by different models.

Figure 5: Visualization of feature maps and their variances learned by different models.

by soft-thresholding and UNet with Resblocks emphasize subtle textures and

details, while those by IIFT present the general structure without emphasizing
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details. To quantify the differences of the feature maps in terms of diversity, we

calculate the variances of feature maps along channels, i.e., the variances of the

pixel values at the same location of the feature maps obtained by one model.

The variances of the feature maps obtained by different models are visualized in

Fig. 5-(d) and the average values of the variances for soft-thresholding operator,

UNet with Resblock, and IIFT are 0.033, 0.051, and 0.084, respectively. It

can be seen that the variances of feature maps obtained by IIFT are larger

in general than those by the other two models. This demonstrates that the

features learned by the IIFT module exhibit greater diversity as compared with

the soft-thresholding operator and UNet with Resblocks.

4.2.3. Ablation study with respect to CDR and LMU

To demonstrate the benefits of CDR and LMU, we performed two ablation

experiments related to these two modules. In the first ablation setting, we elim-

inated the CDR and LMU modules in each stage of the proposed deep unfolding

architecture, and only retained the IIFT module. In the second ablation setting,

we fixed the parameters of the CDR and LMU modules as the initialized param-

eters and only updated the parameters of the remaining modules. These two

variants were trained in the same way as the proposed model. The denoising

results on CBSD68 and BSD68 [59] are presented in Table 3.

Table 3: Results of ablation studies related to CDR and LMU.

Datasets Models
PSNR (in dB)

σ = 15 σ = 25 σ = 50

CBSD68

Only IIFT 34.40 31.82 28.65

Fixed CDR and LMU 34.05 31.46 28.35

Proposed 35.54 31.94 28.77

BSD68

Only IIFT 31.79 29.47 26.61

Fixed CDR and LMU 31.43 29.11 26.25

Proposed 32.06 29.65 26.77

It can be seen that the complete version of the proposed model outperforms
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the other two variants. This is due to the information interaction between

the modules and the various stages in the architecture of the proposed model.

Though the IIFT module takes most of the learnable parameters, it only plays

a part in the whole architecture.

4.3. Comparison with other methods

In this section, we compare the proposed TDU-DLNet with several state-of-

the-art image denoising methods on standard grayscale and color image datasets.

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) [63] are

used to evaluate the denosing results of the models. The quantitative results of

the competitive models were cited directly from the original papers.

4.3.1. Color image denoising

For color image denoising, we adopt the test datasets including CBSD68

[59], Kodak24 [64], McMaster [65] and Urban100, and compared the proposed

model with classical deep learning methods (DnCNN [62], BRDNet [66], and

RPCNN [67]), deep unfolding methods (DCDicL [28] and DGUNet [34]) and

the state-of-the-art models (Restormer [35] and CODE [68]). Among these

methods, BRDNet and RPCNN learn a specific model for each noise level,

while the other methods including the proposed method learn a general model

for different noise levels. The denoising results for colored images are reported

in Table 4, and samples of denoised images and residuals obtained by different

methods are presented in Figs. 6-9.

From Table 4, it can be seen the deep unfolding model DCDicL gets better

performance than the deep learning models except for Restormer. The proposed

TDU-DLNet achieves the best results in terms of PSNR on the CBSD68, Ko-

dak24 and McMaster datasets for most noise levels. For the Urban100 dataset,

Restormer obtains the best results, and the proposed model outperforms all the

other deep learning methods. The Urban100 dataset contains high-resolution

images with fine-scale repetitive structures and textures. Denoising on this

dataset is more challenging than the other datasets. Though the proposed
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Table 4: Denoising results for color images in PSNR(dB)/SSIM(%).

Datasets σ
DnCNN

[62]

BRDNet

[66]

RPCNN

[67]

Restormer

[35] CODE [68]
DCDicL

[28]

DGUNet

[34]

TDU-

DLNet

CBSD68

15 33.90/92.91 34.10/92.91 - 34.40/93.55 34.33/93.80 34.36/93.48 34.20/93.32 34.54/93.58

25 31.24/88.31 31.43/88.47 31.24/88.80 31.80/89.44 31.69/89.70 31.75/89.30 31.60/89.07 31.94/89.49

50 27.95/78.98 28.16/79.42 28.06/79.90 28.63/81.37 28.47/81.34 28.57/81.07 28.40/80.68 28.77/81.45

Kodak24

15 34.47/91.98 34.88/92.49 - 35.33/93.02 35.32/93.12 35.38/93.00 35.03/92.71 35.40/93.04

25 32.02/87.64 32.41/88.56 32.34/88.40 32.92/89.36 32.88/89.39 32.97/89.28 32.63/88.90 33.00/89.39

50 28.83/79.11 29.22/80.40 29.25/80.50 29.88/82.39 29.82/82.02 29.96/82.19 29.55/81.52 29.94/82.38

McMaster

15 33.45/90.36 35.08/92.69 - 35.56/93.41 35.38/93.51 35.50/93.35 35.14/92.92 35.61/93.48

25 31.52/86.95 32.75/89.43 32.33/89.00 33.33/90.60 33.11/90.60 33.26/90.48 32.93/89.96 33.39/90.74

50 28.61/79.86 29.52/82.65 29.35/82.60 30.30/85.20 30.03/84.68 30.22/84.94 29.87/84.11 30.34/85.38

Urban100

15 32.98/93.15 34.42/94.62 - 35.06/95.15 - 34.90/95.11 34.62/94.20 34.94/95.12

25 30.81/90.15 31.99/91.94 31.81/91.90 32.91/93.08 - 32.77/93.00 32.43/91.15 32.77/92.98

50 27.59/83.31 28.56/85.77 28.62/86.20 30.02/88.94 - 29.88/88.84 29.48/87.52 29.78/88.60

Average 31.12/86.89 31.88/88.28 30.38/85.92 32.51/89.63 32.34/88.69 32.46/89.51 32.16/88.84 32.54/89.64

method also uses long-range dependency as in Restormer, the numbers of chan-

nels of the MDTA module in Transformer blocks of the proposed model are only

one-third of the settings in Restormer. From level-1 to level-4 of the encoder-

decoder architecture, the numbers of channels of Transformer blocks in the

proposed method and Restormer are [16, 32, 64, 128] and [48, 96, 192, 384],

respectively. With a reduced number of parameters, the capability of the model

can be compromised, which may lead to performance degradation in denoising

the challenging images in Urban100.

In terms of SSIM, CODE obtains the best results for the cases of lower noise

levels. To compare the overall performance of the models, the average results

over all datasets and all noise levels are presented in the last row of the table.

The proposed model achieves the best average results for both PSNR and SSIM.

From Figs. 6-9, it can be observed that the proposed model can restore edge

details corrupted by noise and obtain clean images of good quality.

4.3.2. Grayscale image denoising

For grayscale image denoising, we used the testing datasets including Set12

[62], BSD68 [59] and Urban100 [69], and compared the proposed model with
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Ground-truth CODE (28.56/87.49)

TDU-DLNet (29.00/88.37)

Noisy input 

 

DnCNN (27.59/83.92)

DGUNet (28.41/87.04)Restormer (28.85/88.10) DCDicL (28.60/87.56)

Figure 6: Denoising results on image 119082 in CBSD68.

Ground-truth CODE (27.50/85.52)

TDU-DLNet (28.02/86.32)

Noisy input 

 

DCDicL (27.88/85.94)

DnCNN (26.37/80.09)

DGUNet (27.21/83.69)Restormer (27.95/86.24)

Figure 7: Denoising results on image 223061 in CBSD68.

Ground-truth DnCNN (29.45/81.46) CODE (30.65/86.13)

DGUNet (30.42/85.36) DCDicL (30.67/85.96)Restormer (30.86/86.16) TDU-DLNet (30.90/86.81)

Noisy input 

 

Figure 8: Denoising results on image 10 in McMaster.

classical deep learning methods (DnCNN [62] and FFDNet [17]), deep unfold-

ing methods (DCDicL [28] and DGUNet [34]) and the state-of-the-art models

(Restormer [35], CODE [68], and NERD [70]). The denosing results for grayscale
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Ground-truth DnCNN (29.45/81.46) CODE (30.65/86.13)

DGUNet (30.42/85.36) DCDicL (30.67/85.96)Restormer (30.86/86.16) TDU-DLNet (30.90/86.81)

Noisy input 

 

Figure 9: Denoising residuals on image 10 in McMaster.

images are summarized in Table 5. Figs. 10-13 present the denoised results and

residuals of different models.

Table 5: Denoising results for grayscale images in PSNR(dB)/SSIM(%).

Datasets σ
DnCNN

[62]

FFDNet

[17]

Restormer

[35]

NERD

[70]
CODE [68]

DCDicL

[28]

DGUNet

[34]

TDU-

DLNet

Set12

15 32.86/90.24 32.75/90.24 33.35/91.15 33.20/91.18 33.33/91.42 33.34/91.15 33.14/90.62 33.30/90.97

25 30.44/86.17 30.43/86.31 31.04/87.53 30.84/87.36 31.01/87.68 31.03/87.48 30.82/87.02 31.00/87.33

50 27.18/78.28 27.32/78.99 28.01/81.21 27.72/80.75 27.93/80.82 28.00/81.22 27.80/80.54 27.96/80.89

BSD68

15 31.73/89.07 31.63/89.02 31.97/89.64 31.91/89.75 31.96/90.15 31.95/89.57 31.78/89.36 32.06/89.60

25 29.23/82.79 29.19/82.88 29.54/83.92 29.43/83.70 29.51/84.40 29.52/83.79 29.36/83.42 29.65/83.85

50 26.23/71.89 26.29/72.39 26.66/74.22 26.49/73.89 26.58/74.09 26.63/73.95 26.47/73.03 26.77/74.06

Urban100

15 32.64/92.46 32.40/92.65 33.70/93.9733.48/93.41 - 33.59/93.88 33.30/93.44 33.35/93.66

25 29.95/87.81 29.90/89.79 31.41/91.1931.03/90.13 - 31.30/91.08 30.81/90.43 31.00/90.67

50 26.26/78.56 26.50/80.47 28.34/85.6527.62/82.92 - 28.24/85.49 27.39/84.09 27.79/84.38

Average 29.61/84.14 29.60/84.75 30.45/86.5030.19/85.90 30.06/84.76 30.40/86.40 30.10/85.77 30.32/86.16

It can be seen from Table 5 that the proposed algorithm obtains the best

PSNR results on the BSD68 among all competing methods. For the Set12 and

Urban100 datasets, the proposed model outperforms the deep learning methods

except for Restormer and the deep unfolding method DCDicL in terms of PSNR.

Restormer and DCDicL obtain slightly better results than the proposed method,

but the numbers of training parameters of these two models are a few times of

that of the proposed model, as will be demonstrated later. NERD and CODE
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Ground-truth CODE (27.27/86.77)

Restormer (27.39/87.31) TDU-DLNet (27.40/86.97)

Noisy input 

 

DnCNN (26.85/84.84)

DCDicL (27.32/87.22)FFDNet (26.92/85.85)

Figure 10: Denoising results on image 05 in Set12.

Ground-truth CODE (26.55/80.49)

Restormer (26.66/80.91) TDU-DLNet (26.60/80.51)

Noisy input 

 

DnCNN (25.60/77.15)

DCDicL (26.71/80.88)FFDNet (25.68/77.50)

Figure 11: Denoising results on image 04 in Set12.

FFDNet (25.92/77.22) DCDicL (26.01/78.02)Restormer (26.13/78.02) TDU-DLNet (26.05/78.12)

Ground-truth DnCNN (25.85/76.15) CODE (26.12/78.05)Noisy input 

 

Figure 12: Denoising results on image 20 in BSD68.

perform better for lower noise levels in terms of SSIM. Figs. 10-13 show the

proposed method can restore clean images and get better performance than the

compared deep learning methods.
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FFDNet (25.92/77.22) DCDicL (26.01/78.02)Restormer (26.13/78.02) TDU-DLNet (26.05/78.12)

Ground-truth DnCNN (25.85/76.15) CODE (26.12/78.05)Noisy input 

 

Figure 13: Denoising residuals on image 20 in BSD68.

4.3.3. Generalization to high-level and real noise

As mentioned in Section 4.1, the proposed model is trained based on syn-

thetic noisy images with additive white Gaussian noise, and the noise level is

from 15 to 50. To test the generalization ability of the model to images with

higher-level noise and real noisy images, we applied the pre-trained models to

images with noise level σ = 75 and real noisy images in [71]. The real noisy

image dataset in [71] contains 15 color noisy images of size 512 × 512 and the

corresponding mean images averaged from 500 shots of the same scene under

controlled indoor environment. The mean images can be used as the “ground-

truth” to compute quantitative results of denoising. The results on noisy images

with σ = 75 and real noisy images are presented in Table 6. The denoised images

of a real image sample are presented in Fig. 14.

Table 6: Denoising results for images with high-level noise (σ = 75) and real noisy images

(PSNR(dB)/SSIM(%)).

Image Type Datasets DnCNN [62] Restormer [35] DCDicL [28] DGUNet[34] TDU-DLNet

Color Images

CBSD68 24.50/59.49 26.97/75.67 26.88/74.69 26.89/75.37 27.12/75.89

Kodak24 25.00/57.39 28.23/77.52 28.02/75.82 28.15/77.26 28.28/77.20

McMaster 25.09/59.02 28.54/81.13 28.32/80.09 28.46/80.91 28.60/81.29

Urban100 24.18/64.94 28.29/85.56 27.69/83.25 28.20/85.37 27.98/84.54

Grayscale Images

Set12 18.73/29.73 26.23/76.51 26.07/75.47 25.99/75.09 26.15/75.79

BSD68 18.73/30.45 25.16/68.17 25.17/67.45 25.09/66.91 25.24/67.88

Urban100 18.99/39.12 26.51/81.05 25.73/78.64 25.65/78.30 25.81/78.93

Real Noisy Images [71] 33.86/86.36 36.31/94.02 36.35/93.16 35.82/91.91 36.56/93.64

The proposed method outperforms DnCNN, DCDicL, and DGUNet, and
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achieves comparable results as compared with Restormer. The denoised image

shown in Fig. 14 illustrates the good generalization of the proposed model to

real noisy images.

Noisy input DnCNN (31.33/70.25)

DGUNet (32.07/76.52) DcDicL (32.30/78.31)

Restormer (32.64/80.60)

TDU-DLNet (33.75/86.70)

Figure 14: Denoising results on image 13 in real noisy image dataset [71].

4.3.4. Model Complexity

The number of training parameters, inference time, and the number of

FLOPs versus the denoising results of different models are presented in Fig.

15. The PSNR results shown in the figure are the average results of the mod-

els presented in Tables 4-5. The number of FLOPS is computed on image size

256 × 256. The proposed model has fewer training parameters than CODE,

DGUNet, Restormer and DCDicL, but achieves competitive results. Although

the numbers of training parameters of BRDNet, DnCNN, FFDNet, and NERD

are smaller than those of other methods, their denoising performance is worse

than other methods. The inference time of TDU-DLNet is medium, which is

longer than Restormer and DGUNet and shorter than CODE and DCDicL. The

deep unfolding models have more FLOPS than deep learning models, and the

number of FLOPS of the proposed model is the smallest among the compared

deep unfolding models.
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Figure 15: The number of training parameters, average inference time, and the number of

FLOPS v.s. average PSNR results of different methods.
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In both the proposed model and the deep learning method Restormer, the

Transformer blocks take most of the learnable parameters. As has been men-

tioned in Section 4.3.1, the numbers of channels of the Transformer blocks in

the proposed method are only one-third of those used in Restormer, which re-

duce the number of parameters dramatically. Despite with a reduced number

of channels, the proposed method achieves promising results due to the multi-

stage process in the unfolding network. The deep unfolding methods DCDicL

and DGUNet have more parameters as the number of channels used in the em-

bedded CNN layers are also high. For example, the number of channels in the

convolutional layers in the encoder-decoder architecture of DCDicL are [64, 128,

256, 512].

5. Conclusion

We have proposed a transformer-based deep unfolding framework for dic-

tionary learning (TDU-DLNet). The general model for dictionary learning is

employed and an iterative optimization approach is then developed based on

ADMM. By unrolling the iterative optimization method, we design a deep un-

folding network. A transformer-based module is developed to learn priors of

the representation coefficients and an inter-stage information fusion module is

introduced to reduce the information loss between different stages of the un-

folding network. Extensive experiments for image denosing on several standard

datasets have been performed, and the results have demonstrated that the pro-

posed model can obtain better or comparable results, but use fewer parameters,

as compared with the state-of-the-art methods. To further improve the perfor-

mance of the unfolding network, more advanced architectures proposed recently,

e.g., Mamba, can be considered in the future.
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